Motores de corriente continua (DC)
En la imagen anterior se observan algunos clásicos micromotores DC (Direct Current) o también llamados CC (corriente continua) de los usados generalmente en robótica. Los hay de distintos tamaños, formas y potencias, pero todos se basan en el mismo principio de funcionamiento.
Accionar un motor DC es muy simple y solo es necesario aplicar la tensión de alimentación entre sus bornes. Para invertir el sentido de giro basta con invertir la alimentación y el motor comenzará a girar en sentido opuesto.
A diferencia de los motores paso a paso y los servomecanismos, los motores DC no pueden ser posicionados y/o enclavados en una posición específica. Estos simplemente giran a la máxima velocidad y en el sentido que la alimentación aplicada se los permite.
El motor de corriente continua está compuesto de 2 piezas
fundamentales :
• Rotor
• Estator
Dentro de éstas se ubican los demás componentes como :
• Escobillas y porta escobillas
• Colector
• Eje
• Núcleo y devanado del rotor
• Imán Permanente
• Armazón
• Tapas o campanas
Tabla de Estructura
La siguiente tabla muestra la distribución de las piezas del
motor :
Rotor Estator
Eje Armazón
Núcleo y Devanado Imán permanente
Colector Escobillas y porta escobillas
Tapas
Rotor
Constituye la parte móvil del motor, proporciona el torque para mover a la carga.
Está formado por :
• Eje: Formado por una barra de acero fresada. Imparte la
rotación al núcleo, devanado y al colector.
• Núcleo: Se localiza sobre el eje. Fabricado con capas laminadas de acero, su función es proporcionar un trayecto magnético entre los polos para que el flujo magnético del devanado circule.
Las laminaciones tienen por objeto reducir las corrientes parásitas en el núcleo. El acero del núcleo debe ser capaz de mantener bajas las pérdidas por histéresis. Este núcleo laminado contiene ranuras a lo largo de su superficie para
albergar al devanado de la armadura (bobinado).
• Devanado: Consta de bobinas aisladas entre sí y entre el núcleo de la armadura. Estas bobinas están alojadas en las ranuras, y están conectadas eléctricamente con el colector, el cual debido a su movimiento rotatorio, proporciona un camino de conducción conmutado.
• Colector: Denominado también conmutador, está constituido de láminas de material conductor (delgas), separadas entre sí y del centro del eje por un material aislante, para evitar cortocircuito con dichos elementos. El colector se encuentra sobre uno de los extremos del eje del rotor, de modo que gira con éste y está en contacto con las escobillas.La función del colector es recoger la tensión producida por el devanado inducido, transmitiéndola al circuito por medio de las escobillas (llamadas también cepillos)
Estator
Constituye la parte fija de la máquina. Su función es suministrar el flujo magnético que será usado por el bobinado del rotor para realizar su movimiento giratorio.
Está formado por :
• Armazón: Denominado también yugo, tiene dos funciones primordiales : servir como soporte y proporcionar una trayectoria de retorno al flujo magnético del rotor y del imán permanente, para completar el circuito magnético.
• Imán permanente: Compuesto de material ferromagnético altamente remanente, se encuentra fijado al armazón o carcaza del estator. Su función es proporcionar un campo magnético uniforme al devanado del rotor o armadura, de modo que interactúe con el campo formado por el bobinado, y se origine el movimiento del rotor como resultado de la interacción de estos campos.
• Escobillas: Las escobillas están fabricadas se carbón, y poseen una dureza menor que la del colector, para evitar que éste se desgaste rápidamente. Se encuentran albergadas por los portaescobillas. Ambos, escobillas y portaescobillas, se encuentran en una de las tapas de estator.
La función de las escobillas es transmitir la tensión y corriente de la fuente de alimentación hacia el colector y, por consiguiente, al bobinado del rotor. La función del portaescobillas es mantener a las escobillas en su posición de contacto firme con los segmentos del colector. Esta función la realiza por medio de resortes, los cuales hacen una presión moderada sobre las escobillas contra el colector. Esta presión debe mantenerse en un nivel intermedio pues, de ser excesiva, la fricción
desgastaría tanto a las escobillas como al colector; por otro lado, de ser mínima esta presión, se produciría lo que se denomina "chisporroteo", que es cuando aparecen chispas entre las superficies del colector y las escobillas, debido a que no existe un buen contacto.
En la imagen anterior se observan algunos clásicos micromotores DC (Direct Current) o también llamados CC (corriente continua) de los usados generalmente en robótica. Los hay de distintos tamaños, formas y potencias, pero todos se basan en el mismo principio de funcionamiento.
Accionar un motor DC es muy simple y solo es necesario aplicar la tensión de alimentación entre sus bornes. Para invertir el sentido de giro basta con invertir la alimentación y el motor comenzará a girar en sentido opuesto.
A diferencia de los motores paso a paso y los servomecanismos, los motores DC no pueden ser posicionados y/o enclavados en una posición específica. Estos simplemente giran a la máxima velocidad y en el sentido que la alimentación aplicada se los permite.
El motor de corriente continua está compuesto de 2 piezas
fundamentales :
• Rotor
• Estator
Dentro de éstas se ubican los demás componentes como :
• Escobillas y porta escobillas
• Colector
• Eje
• Núcleo y devanado del rotor
• Imán Permanente
• Armazón
• Tapas o campanas
Tabla de Estructura
La siguiente tabla muestra la distribución de las piezas del
motor :
Rotor Estator
Eje Armazón
Núcleo y Devanado Imán permanente
Colector Escobillas y porta escobillas
Tapas
Rotor
Constituye la parte móvil del motor, proporciona el torque para mover a la carga.
Está formado por :
• Eje: Formado por una barra de acero fresada. Imparte la
rotación al núcleo, devanado y al colector.
• Núcleo: Se localiza sobre el eje. Fabricado con capas laminadas de acero, su función es proporcionar un trayecto magnético entre los polos para que el flujo magnético del devanado circule.
Las laminaciones tienen por objeto reducir las corrientes parásitas en el núcleo. El acero del núcleo debe ser capaz de mantener bajas las pérdidas por histéresis. Este núcleo laminado contiene ranuras a lo largo de su superficie para
albergar al devanado de la armadura (bobinado).
• Devanado: Consta de bobinas aisladas entre sí y entre el núcleo de la armadura. Estas bobinas están alojadas en las ranuras, y están conectadas eléctricamente con el colector, el cual debido a su movimiento rotatorio, proporciona un camino de conducción conmutado.
• Colector: Denominado también conmutador, está constituido de láminas de material conductor (delgas), separadas entre sí y del centro del eje por un material aislante, para evitar cortocircuito con dichos elementos. El colector se encuentra sobre uno de los extremos del eje del rotor, de modo que gira con éste y está en contacto con las escobillas.La función del colector es recoger la tensión producida por el devanado inducido, transmitiéndola al circuito por medio de las escobillas (llamadas también cepillos)
Estator
Constituye la parte fija de la máquina. Su función es suministrar el flujo magnético que será usado por el bobinado del rotor para realizar su movimiento giratorio.
Está formado por :
• Armazón: Denominado también yugo, tiene dos funciones primordiales : servir como soporte y proporcionar una trayectoria de retorno al flujo magnético del rotor y del imán permanente, para completar el circuito magnético.
• Imán permanente: Compuesto de material ferromagnético altamente remanente, se encuentra fijado al armazón o carcaza del estator. Su función es proporcionar un campo magnético uniforme al devanado del rotor o armadura, de modo que interactúe con el campo formado por el bobinado, y se origine el movimiento del rotor como resultado de la interacción de estos campos.
• Escobillas: Las escobillas están fabricadas se carbón, y poseen una dureza menor que la del colector, para evitar que éste se desgaste rápidamente. Se encuentran albergadas por los portaescobillas. Ambos, escobillas y portaescobillas, se encuentran en una de las tapas de estator.
La función de las escobillas es transmitir la tensión y corriente de la fuente de alimentación hacia el colector y, por consiguiente, al bobinado del rotor. La función del portaescobillas es mantener a las escobillas en su posición de contacto firme con los segmentos del colector. Esta función la realiza por medio de resortes, los cuales hacen una presión moderada sobre las escobillas contra el colector. Esta presión debe mantenerse en un nivel intermedio pues, de ser excesiva, la fricción
desgastaría tanto a las escobillas como al colector; por otro lado, de ser mínima esta presión, se produciría lo que se denomina "chisporroteo", que es cuando aparecen chispas entre las superficies del colector y las escobillas, debido a que no existe un buen contacto.
No hay comentarios:
Publicar un comentario